Texnoman

Assalomu alaykum! Siz Axborot texnologiyalari sohasining o'zbek tilidagi bloggerlar portaliga tashrif buyurdingiz! Loyihamizning asosiy maqsadi haqida bu yerda o'qishingiz mumkin.

Kirish A'zo bo'lish


Farzandlarimiz bizdan ko'ra kuchli, dono, bilimli va albatta baxtli bo'lishlari shart.

- Islom Karimov


Big Data'ning asosiy 8 atamasi.

Assalom alaykum.

Dunyoda raqamlangan ma'lumotlar hajmi #ekponent bo'yicha o'sib bormoqda. IBS kompaniyasining ma'lumotlariga qaraganda, 2003-yilda 5 eksabayt(1 eksabayt - 1 milliard gigabayt) ma'lumot yig'ilgan ekan. 2008-yilda u 0.18 zettabayt(1 zettabayt = 1024 eksabayt) gacha, 2011-yilga kelib 1.76 zettabayt, 2013-yilda 4.4 zettabaytgacha yetibdi. 2015-yilning mayida dunyoda yig'ilgan raqamlanga ma'lumotlar hajmi 6.5 zettabaytdan oshib ketibdi. 2020-yilga kelib insoniyat 40-44 zettabayt raqamli ma'lumot hosil qilar ekan.

IBS mutaxassislarining fikriga ko'ra, 2013-yilda yig'ilgan ma'lumotlar massivining atiga 1.5%i qandaydiy axborot qiymatiga ega bo'lgan ekan. Baxtga qarshi, hozir dunyoda katta ma'lumotlarni qayta ishlash texnologiyalari bo'lib, ular yordamida juda katta ma'lumotlar massividan insonlarga kerak, qiziq bo'lgan, foydali ma'lumotlarni ajratib olish mumkin bo'ladi.

Ushbu maqolada Big Data(katta ma'lumotlar)ning 8 eng asosiy atamalari va ular haqida qisqacha tushunchalar beriladi.

Big data(katta ma'lumotlar) - juda katta hajmdagi bir jinsli bo'lmagan va tez tushadigan raqamli ma'lumotlar bo'lib, ularni odatiy usullar bilan qayta ishlab bo'lmaydi. Ba'zi hollarda, katta ma'lumotlar tushunchasi bilan birga shu ma'lumotlarni qayta ishlash ham tushuniladi. Asosan, analiz obyekti katta ma'lumotlar deb ataladi.

Big data atamasi 2008-yilda dunyoga kelgan. Nature jurnali muharriri Klifford Linch dunyo ma'lumotlar hajmining juda tez sur'atda o'sishiga bag'ishlangan maxsus sonida big data atamasini qo'llagan. Biroq, katta ma'lumotlar avval ham bo'lgan. Mutaxassislarning fikricha, kuniga 100 gb dan ko'p ma'lumot tushadigan oqimlarga big data deb aytilar ekan.

Katta ma'lumotlarni analiz qilish, inson his etish imkoniyatidan tashqarida bo'lgan qonuniylatlarni aniqlashda yordam beradi. Bu esa kundalik hayotimizdagi barcha sohalar, hukumatni boshqarish, tibbiyot, telekommunikatsiya, moliya, transport, ishlab chiqarish va boshqa sohalarni yanada yaxshilash, ularning imkoniyatlarini oshirish, muommolarga muqobil yechimlar izlab topish imkonini yaratadi.

Data lake(ma'lumotlar ko'li) - qayta ishlanmagan katta ma'lumotlar ombori.

"Ko'l" har xil manbalardan kelgan, har xil formatda bo'lgan ma'lumotlarni saqlaydi. Bu esa odatiy relatsion ma'lumotlar omborida ma'lumotlarni aniq struktura asosida saqlashdan ko'ra arzonroqqa tushadi. Ma'lumotlar ko'li, ma'lumotlarni boshlang'ich holatida analiz qilish imkonini beradi. Bundan tashqari, "ko'l"lardan bir vaqtni o'zida bir nechta ishchilar foydalanishlari mumkin.

Data science(ma'lumotlar haqidagi fan) - analiz muommolarini , ma'lumotlarni qayta ishlash va ularni raqamli ko'rinishda taqdim etishni o'rganadigan fan.

Bu atama dunyoga kelgan vaqt 1974-yil hisoblanadi. O'sha yili Daniyalik informatik, Peter Naur "A Basic Principle of Data Science" nomli kitobini chop ettirgan.

2010-yillar boshida katta ma'lumotlarni tarqalishi natijasida bu yo'nalish juda foydali va kelajagi bor biznesga aylandi. Va o'shandi katta ma'lumotlar bilan ishlaydigan mutaxassislarga talab juda oshib ketdi.

Data science tushunchasiga ma'lumotlar omborini loyihalash va raqamlangan ma'lumotlarni qayta ishlashning barcha metodlari kiradi. Ko'plab mutaxassislar fikricha, aynan data science big dataning biznes nuqtai nazaridan hozirgi zamonoviy o'rindoshi hisoblanadi.

Data mining(ma'lumotlarni topish) - biron qonuniyatni topish maqsadida ma'lumotlarni intellektual analiz qilishga aytiladi. Isroillik matematik Grigoriy Pyatetskiy-Shapiro 1989-yilda bu atamani fanga kiritgan.

Texnologiyalar, avvalari noma'lum va foydali bo'lgan qayta ishlanmagan(hom) ma'lumotlarni topish jarayoniga data mining(ma'lumotlarni topish) deyiladi. Data mining metodlari ma'lumotlar ombori, statistika va sun'iy intellekt tutashgan nuqtada joylashadi.

Machine learning(mashinani o'qitish) - o'zi o'rganadigan dasturlar yaratish amaliyoti va nazariyasi, sun'iy intellektning katta qismi.

Dasturchilar o'z algoritmlariga xususiy hollarda umumiy qonuniyatlarni aniqlashni o'rgatishadi. Natijada, kompyuter, inson avvaldan ko'rsatib o'tgan buyruqlaridan emas, balki, o'z shaxsiy malakasidan kelib chiqib qaror qabul qiladi. Bunday o'qitishning juda ko'p metodlari data mining'ga oid bo'lishi mumkin.

Mashinani o'qitishga birinchi tarifni 1959-yilda amerikalik informatik Artur Samuel bergan. U sun'iy intellekt elementlariga ega bo'lgan shashka o'yini, dunyoda birinchi o'zi o'rganadigan dasturni yaratgan.

Deep learning(chuqur o'qitish) - yanada murakkab va yanada mustaqil bo'lgan o'zi o'qidigan dasturlar yaratadigan mashinani o'qitish turi. Oddiy mashinani o'qitish hollarida boshqariladigan malaka yordamida kompyuter bilimlarni aniqlab oladi: dasturchi algoritmga ma'lum misollarni ko'rsatadi, xatolarni qo'lda to'g'rilaydi. Deep learningda esa, tizim o'zi o'z funksiyalarini loyihalaydi, ko'p darajali hisob-kitoblar amalga oshiradi va atrof-muhit haqida xulosalar qiladi.

Odatda chuqur o'qitishni neyron tarmoqlarga tadbiq qilishadi. Bu texnologiya asosan rasmlarni qayta ishlashda, nutqni tanishda, neyromashina tarjima, farmatsevtikadagi hisoblashlarda va boshqa zamonaviy texnologiyalarda qo'llaniladi. Asosan Google, facebook va Baidu tomonidan loyihalarga tadbir qilinadi.

Sun'iy neyron tarmog'i - oddiy protsessorlar(sun'iy neyronlar) birlashtirilgan tizimi bo'lib, insonning nerv tizimini imitatsiya qiladi. Bunday struktura evaziga, neyron tarmoqlari dasturlanmaydi, ular o'qitishadi. Huddi haqiqiy neyronlar kabi, protsessorlar signallarni oddiygina qabul qilishadi va boshqa protsessorlarga o'zatishadi. Shu bilan birga, boshqa butun tizim algoritmlar bajara olmaydigan murakkab topshiriqlarni bajaradi.

1943-yilda amerikalik olimlar Uorren Makkalok va Uolter Pittslar sun'iy neyron tarmog'i tushunchasini fanga kiritishgan.

Business intelligence(biznes-analitika) - aniq strukturaga ega bo'lmagan juda katta hajmdagi ma'lumotlarni qayta ishlash natijasida muqobil biznes yechimlar izlashga aytiladi.

Effektiv biznes-analitika ichki va tashqi ma'lumotlarni analiz qiladi - ham bozor axborotlarini, ham mijoz-kompaniyaning hisobotlarini hisobga oladi. Bu biznesni butunlay tushunishga yordam beradi, shu bilan birga, strategik va operatsion qarorlar qabul qilishga zamin yaratadi(mahsulot narxini aniqlashda, kompaniya rivojlanishining asosiy yo'nalishlarini belgilab olishda).

Bu atama 1958-yilda IBM taqdiqotchisi Xans Piter Lun maqolasida birinchi bo'lib ko'rsatilgan. 1996-yilda axborot texnologiyalari bozorini o'rganishga asoslangan Gartner analitik agentligi business intelligence tarkibiga data mining metodikasini ham qo'shgan.

Manba:


WinStyle

Muallif haqida

WinStyle Java, Javascript, C++, MySql, NoSql, Oracle, Raspberry


Blogdagi so‘nggi maqolalar:


Fikrlar 1

humoyun91
humoyun91
"hom ma'lumotlar" atamasi boshqacha talqinda yozilsa maqsadga muvofiqroq bolardi, menimcha bu iborani ingliz tilidagi ekvivalenti bu "raw data", yani qayta ishlanmagan ma'lumotlar ma'nosini beradi
Iltimos, fikr bildirish uchun saytga kiring yoki ro‘yxatdan o‘ting!